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Bovine pericardium, treated with glutaraldehyde, is used in the construction of heart 
valve substitutes. This study examines the mechanical properties of this tissue by using a 
continuum physics approximation of the material. A consideration of the relative mag- 
nitudes of the characteristic deformation time of a heart valve leaflet and the measured 
relaxation time of the tissue suggests that it can be effectively represented by a non-linear 
elastic solid. A compressible isotropic strain energy function is used to characterize the 
homogeneous deformation of the tissue when it is subjected to uniaxial load. The initial 
elastic material which is characterized by only two elastic constants, undergoes a tran- 
sition to a second elastic material which is governed by a strain energy function of differ- 
ent magnitude by the same functional form as that associated with the initial elastic solid. 
This model is used to investigate the pericardial sac-to-sac and within-sac directional 
variation of the response to load in the unstrained state. Analysis of variance shows that 
glutaraldehyde treated pericardium possesses no preferred directional strength properties 
in the unstrained state. Any observed differences in the mechanical properties of different 
test specimens can be attributed to random biological variation alone. 

1. Introduction and historical background 
This study arises from the need to characterize the 
mechanical properties of bovine pericardium 
which is to be used in the construction of a heart 
valve. The design of a valve leaflet with suitable 
mechanical strength and appropriate biocompati- 
bility for optimum function involves a multi- 
disciplinary approach. The analysis of the 
molecular constituents of soft tissue and their 
mutual interaction are usually the province of the 
biochemist and histologist. The gross behaviour of 
tissue when subjected to load or pressure is often 
studied by a bioengineer or material scientist. If  
quantification of the observed behaviour is 
required then the language of mathematics must 
be involved. The emphasis of the work presented 
here will be on the macroscopic properties of  the 
tissue. However, an understanding of the micro- 
structure is also required if the mathematical 

models, which are developed to describe the 
material behaviour, are to be appreciated fully. 

Although as early as 1847, Wertheim suggested 
that, for tendon, stress might be related exponen- 
tially to strain, the study of living tissues by 
modern engineering techniques only developed 
around 1960. One of the first tissues to be investi- 
gated was skin. This latter work arose from an 
attempt to provide the plastic surgeon with 
quantitative information which would eliminate 
some of the trial and error involved in reconstruc- 
tive surgery [1]. 

The standard procedure for assessing a 
material's static tensile properties involves the 
application of uniaxial loading. When a rectangular 
metal strip is subjected to a uniaxial load it is 
assumed that the induced stress depends only on 
the current deformation. For metals the deforma- 
tion gradient is extremely small and the strain 
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measure can be considered as infinitesimal. Thus 
the stress can be represented, to a good approxi- 
mation, by a linear function of the infinitesimal or 
linear strain. As a consequence the observed vari- 
ation of stress with infinitesimal strain lies on a 
straight line over a wide range of loads. The slope 
of the stress-strain curve (Young's modulus, E) 
provides a measure of the uniaxial extensibility of 
the material. The ratio of the contraction in the 
width and the extension of the length of the test 
specimen (Poisson's ratio) is related to the volume 
changes in the specimen which can arise during 
uniaxial loading. For infinitesimal strains a 
measure of the volume change is provided by the 
cubical dilatation. The ratio of the hydrostatic 
pressure (one third of the sum of the normal 
stresses) and the cubical dilatation defines the bulk 
modulus, K. These three parameters which charac- 
terize the elastic model of a material are related by 
the equation 

g = E/3(1--  23') (1) 

It also follows that if K >> E then 3' -~ �89 and the 
material is said to be incompressible. 

When skin was tested, by these engineering 
methods, it was discovered that this living tissue 
deviated from the idealized Hookean elastic model 
in a number of ways. 

1.The tissue exhibited a highly non-linear 
relationship between stress and the extension 
ratio in the direction of load [2]. 

2. The material could be extended by up to 
30% for relatively small loads, so that the strain 
measure was no longer infinitesimal. 

3. When skin was loaded suddenly and then 
maintained at a constant extension the stress was 
gradually relaxed over a period of time [3]. 

4. Mechanical energy was dissipated during the 
loading and unloading of the tissue since the 
phenomenon of hysteresis was observed. Also 
irreversible plastic deformation and strain harden- 
ing was observed during repeated cyclic testing [4]. 

The problem of characterizing a material that 
displayed a non-linear relationship between stress 
and extension ratio had been tackled earlier by 
workers in rubber and leather technology. To 
analyse the observed response of vulcanized rubber 
to load, the concept of a potential energy func- 
tion which depended only on the current state of 
non-linear strain was used [5]. This approach 
models the material as an idealized non-linear 
elastic solid and neglects any energy losses or 
response delays caused by viscous dissipation. In 

general the strain energy function depends on the 
individual components of the matrix represent- 
ation of the strain tensor. However, when the 
material is isotropic (no preferred mechanical 
properties in the unstrained state) it can be shown 
that the strain energy function depends only on 
the strain invariants of the strain tensor [5]. 

Mechanical testing of vulcanized rubber [5] sug- 
gested that these materials were isotropic. Further- 
more although small changes in volume (expan- 
sions) were observed during uniaxial loading [6] 
rubber has usually been considered as an incom- 
pressible material. The assumptions of isotropy 
and incompressibility allowed the construction of 
relatively simple elastic constitutive equations, in 
terms of a strain energy function, which ade- 
quately described the mechanical behaviour of 
vulcanized rubber in a number of different exper- 
imental situations [5]. 

The majority of workers who first studied the 
response of skin to uniaxial loading fitted their 
experimental results by means of a power low 
relation or an exponential function [7]. Although 
this approach allows a quantitative comparison to 
be made between different tissues, between the 
same tissue at a different age and between 
chemical treatments of the same tissue it is limited 
in its application. In the first place the underlying 
physics which determines the observed response to 
load is lost by simple curve fitting. Secondly 
extrapolation to non-uniaxial problems is virtually 
impossible. 

Recognizing the inadequacy of soft tissue 
characterization in terms of Young's modulus, 
Fung [8] introduced a strain energy function, W, 
which he assumed depended only on the extension 
ratio, X, in the direction of load. Fung assumed a 
linear relation existed between stress, o, and the 
slope dcr/dX of the stress-strain curve. By solving 
the equation do/dX = k a ,  not surprisingly, he 
showed the stress was an exponential function of 
X. When the slope of the stress-strain curve was 
expressed as a quadratic function of stress the 
experimental points could be fitted by a four- 
parameter non-linear function characterized by the 
presence of an exponential function. Since this 
characteristic exponential factor is absent in the 
strain energy functions used to describe vulcanized 
rubbers, Fung concluded that rabbit mesentery is 
entirely different to vulcanized rubber. 

Experiments performed by Carew et  al. [9] on 
the canine thoracic aorta have purported to show 
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that the arterial wall is incompressible, to a good 
approximation: This work has been quoted by 
Lanir and Fung [3] as evidence that skin is incom- 
pressible in the physiological stress range. How- 
ever, the fact that Carew et  al. [9] based their 
conclusions on the comparison of engineering 
parameters, that have no relevance in the non- 
linear finite deformation behaviour of biological 
tissue, suggests that the assumption of incom- 
pressibility should be viewed with caution. 

Lanir and Fung [3] used the incompressibility 
assumption to calculate the contraction ratio, 
Xa, in the vertical direction perpendicular to the 
plane of  the tissue subjected to uniaxial load. They 
measured, Xl, the extension ratio in the direction 
of load and the contraction ratio, X2, in the plane 
of the tissue. From the measured values of X1, and 
?~2 and the assumption of incompressibility 

X3 = 1/XlX2. (2) 

The computed value of X3 was not equal to the 
measured value of X2 at any experimental point 
during uniaxial tension tests. A difference between 
X2 and X3 for a specimen under uniaxial load 
implies that the material is anisotropic. If, how- 
ever, the material is compressible, Equation 2 will 
be invalid and X3 cannot be computed, but must 
be measured, to compare with the measured value 
of X2. 

Experiments performed by Patel [10] on 
arterial canine segments have been quoted as evi- 
dence that arteries are anisotropic. These exper- 
iments have been interpreted in terms of linear 
elastic constitutive equations, albeit with quite 
general elastic symmetries. If stress is related non- 
linearly to the current strain for biological tissue 
any interpretation based on linear theories must be 
treated with suspicion. However, Vaishnav et al. 

[11] have then used the incremental response of 
canine aorta to pressure to evaluate the initial 
incremental elastic moduli associated with radial, 
axial and azimuthal directions. Differences in these 
moduli have been attributed to the anisotropic 
properties of the tissue. Alternatively, Tickner and 
Sacks [12] have based the static elastic behaviour 
of blood vessels on an isotropic compressible 
theory of non-linear elasticity. 

In the last ten years there has been a significant 
increase [13] in the use of leaflet-type heart valve 
substitutes. These bioprostheses are generally of 
two types, namely (i) chemically treated and 
frame mounted porcine valves and (ii) chemically 

treated bovine pericardium pressure formed and 
mounted on a frame to produce a three-leaflet 
configuration. In both cases the chemical treat- 
ment involves the use of appropriately buffered 
glutaraldehyde. This process has been shown to 
provide appropriate antigenicity of the finished 
valve whilst also increasing the number of collagen 
cross-links, and thus enhancing the mechanical 
strength of the tissue. 

A number of studies by Broom [14-17] have 
investigated the morphological and mechanical 
effects of glutaraldehyde fixation on valve-leaflet 
tissue. Glutaraldehyde fixation introduces a large 
number of stable cross-links between the amino 
acid groups of the polypeptide chains of collagen 
and supplements the cross-links which occur 
naturally in the untreated tissue [17]. The alter- 
ation in mechanical properties of the tissue 
through such fixation techniques has been por- 
trayed by a different mechanical response to 
uniaxial load [17]. There has been no attempt 
in these studies to interpret the experimental 
observations by parametric characterization of the 
leaflet tissue. 

However, Rabkin and Hsu [ 18] have proposed a 
number of mathematical and mechanical models 
to describe the relationship between stress and 
strain in untreated pericardium. On the basis of 
goodness of fit to observed data the stress was 
expressed as an exponential function of extension 
ratio (referred to as strain) which depended on 
two material parameters. As in earlier descriptions 
of other tissues the modelling procedure was 
empirically based and lacked physical derivation. 

The study presented here attempts to clarify 
both the terminology and the analytical incon- 
sistences which have arisen in earlier studies of 
soft tissue behaviour. A brief discussion of the 
microstructure of pericardium is followed by the 
construction of a continuum approximation of the 
tissue. A comparison of the characteristic time in 
the problem being investigated and the tissue 
relaxation time is used to invoke an elastic con- 
stitutive equation for the glutaraldehyde fixed 
pericardium tissue. Reference is made to the 
molecular constitution of the material when 
deciding on the most appropriate form of the 
elastic strain energy function for this constitutive 
equation. The physical concepts of isotropy, com- 
pressibility and homogeneity are defined within 
the framework of non-linear elasticity theory 
before a specific isotropic, compressible elastic 
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model of  the tissue is constructed. The authenti- 
city of  the model  is tested by its abili ty to predict 
the observed functional relationship between 
induced stress and the axial extension ratio in an 
uniaxial load test. Mathematical analysis is used 
to determine the slope of  the s t ress-extension 
ratio curve in the limit of  zero load. In this way 
the mechanical response to load, in the unstrained 
state, in different uniaxial directions can be com-  
puted from the experimental  observations. Finally,  
the possible relevance o f  the material characteriz- 
ation presented here is discussed with respect to 
other soft biological tissue. 

2. Theoretical concepts 
2.1. The structure of bovine pericardium 
The pericardium in mammals consists of  two 
parts: an outer, fibrous pericardium and an inner, 
double layered sac called the serous pericardium. 
It is the combined outer layer of  the serous peri- 
cardium and the fibrous pericardium which is used 
to construct bioprosthetic  heart valve leaflets. 
This soft collagenous tissue consists predominantly 
of  collagen, elastin, ground substance and water. 
Collagen is the polypeptide chain which when 
organized into fibres is thought to dominate the 
structural integrity and gross mechanical behaviour 
of the tissue. Elastin is a globular rather than 
helical protein. Four  lysine-derived units join to 
form the four-pronged desmosine link that ties 
four elastin polypept ide chains together. The 
ground substance consists of  mucopolysaccharide,  
glycoproteins and soluble proteins and accounts 
for less than 1% of  the total  tissue weight. Bovine 
pericardium in its natural state consists of  76% by 
weight of  water [33]. Almost  all of  this water is 
unbound. 

TABLE I Construction of the largest collagen unit, the 
collagen fibril 

Basic unit - left-hand helix, 
"the c~ chain" polypeptide molecular 

chain 

Figure 1 A model of a portion of the left hand helical 
collagen polypeptide a chain. The projections perpendic- 
ular to the basic helix represent the individual amino acid 
side chains. There are usually 1050 amino acids in one 
collagen helix. 

Since chemical treatments introduced to pro- 
vide biological stability and enhance gross 
mechanical strength are directed specifically at the 
collagen molecule, the construction of  the largest 
collagen unit,  the collagen fibril, is summarized in 

Table I. Models of  the polypept ide ~ chain, the 
tropocollagen molecule and the pentafibril  are 
displayed in Figs. 1 to 3. 

Naturally occurring intra-molecular cross-links 
are found in the amino terminals (N terminals) of  
the triple helix. Interfibrillar cross-links arise from 
a reaction between lysine derived aldehyde and 
lysine or hydroxylysine.  

Glutaraldehyde is a bifunctional aldehyde 
which is able to cross-link two molecules of  

3 c~ chains 
tropocollagen molecule 

right-hand superhelix, 
rod like, length 290 nm, 
diameter 1.4 nm. Cross- 
links in the terminals 

5 staggered 
tropocollagen molecules - 
"pentafibril" 

Aggregation 
of pentafibrils 

Extensive intermolecular 
cross-links and inter- 
fibrillar cross-links 

Collagen fibril, 100 nm 
diameter 

Figure 2 A model of a portion of the right-hand superhelix, 
the tropocollagen molecule. The unit is constructed from 
three left-hand ce chains. These chains are represented by 
the helices with one, two and no circumferential bands. 
The attached "beads" again represent the amino acid side 
chains. 
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Figure 3 A model of a protion of the collagen pentafibril. 
The rods represent a tropocoUagen molecule. The dark 
circle represents the amino (N) terminal and the light 
circle represents the carboxyl (C) terminal of the tropo- 
collagen molecule. It can be seen that the N terminals 
trace out a helix around the cylindrical structure. The dark 
bands represent potential sites of natural and artificially 
induced intra-molecular cross-links. 

collagen by forming covalent bonds. Its molecular 
size appears to be particularly suitable for bridging 
the gaps between the amino terminals, usually 
through the lysine or hydroxylysine residues, of 
collagen polypeptide chains. As a consequence 
glutaraldehyde treatment of natural bovine peri- 
cardium induces collagen molecular cross-linking 
above that found in the natural state. This in turn 
alters the gross mechanical properties of the tissue 
when tested under load [17]. There is virtually no 
change in the total water content of the tissue 
after glutaraldehyde fixation [33]. 

The inherent molecular complexity of the 
tissue suggests that a quantitative microstructural 
theory of the response of the pericardium to load 
would lead to mathematical intractability if all the 
molecular forces are realistically considered. For 
this reason a continuum physics approximation of 
the real tissue behaviour is usually invoked when 
quantifying the mechanical properties of both 
the natural and glutaraldehyde treated peri- 
cardium. Only glutaraldehyde fixed material will 
be considered here. 

2.2. The continuum physics approximation 
In order to develop a mathematical theory which 
describes the macroscopic behaviour of materials 
the microscopic structure is usually disregarded 
[19-21]. The material is considered to be con- 
tinuously distributed throughout some region of 
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space. At any instant of time, every point in the 
spatial region is occupied by a particle, known as 
the material particle. A material body, in this 
study a volume of pericardium, is idealized as a set 
of material particles such that, at each instant of 
time, t, each particle of the set is assigned to a 
unique point of a region R in three-dimensional 
Euclidean space. It is assumed that each point in R 
is occupied by just one particle. 

In reality any measuring device or "observer" 
usually averages the material microscopic structure 
over a small finite spatial volume and over a small 
finite time interval. If  the characteristic length 
associated with the spatial volume is small com- 
pared with the smallest characteristic macroscopic 
length, as in the problem under consideration, 
then the spatial volume is considered to be a point, 
the material point, on the macroscopic length 
scale. For example, the typical thickness of the 
calf pericardium tissue used in this study, is of the 
order of 0.3 mm. If  this thickness is divided into 
100 (say) equal parts to give a characteristic length 
scale of 3 ~m, then a sphere with a diameter 3/~m 
can be considered as a material point on the 
macroscopic scale. The molecular structure of the 
tissue is averaged over this volume, at an instant, 
to obtain the material point macroscopic charac- 
teristics of the tissue. 

It has been shown elsewhere (see Trowbridge 
[22]) that the above concept should also be 
applied to time, since the time resolution as well 
as the space resolution of an observer creates the 
illusion of a continuously distributed material on 
which the mathematical idealization is based. 
However, the inter-molecular forces in those 
materials which display solid-like characteristics 
are considered to be much greater than the forces 
experienced in those materials with fluid-like 
characteristics and as a consequence it is assumed 
that there will be relatively little change with time 
in the relative positions of the constituent mole- 
cules in soft biological tissue such as skin, tendon 
or pericardium. 

The importance of these concepts becomes 
apparent when it is realized that the average 
properties of all the molecules, which includes 
the numerous cross-linkage bonds in collagen 
and elastin, in the "small" material volume at an 
instant, provide the continuum point properties 
in the mathematical description of soft biological 
tissue. The fibrous nature of the collagen constitu- 
ent can often be observed in soft tissue. The inter- 



molecular cross-links cannot. A substantial number 
of collagen fibres (diameter 100 nm) can exist in a 
"small" sphere of diameter 3/am. The continuum 
approximation "smoothes out" the microstruc- 
tural complexity of the tissue and the commonly 
held concept of collagen fibres in a background 
matrix is no longer appropriate with this (3/am 
say) continuum length scale. 

2.3. What is a suitable constitutive 
equation? 

In order to describe the behaviour of materials 
mathematically, some idealization of the real 
material is usuaUy necessary. In the classical 
linearized theory of elasticity, the stress in a 
sheared body is taken to be proportional to the 
amount of shear. The Navier-Stokes theory of 
viscous fluids takes the shearing stress to be pro- 
portional to the rate of shear. In most materials, 
under appropriate circumstances, effects of both 
elasticity and viscosity are noticeable. As a conse- 
quence, the idealization which best describes the 
material depends strongly on the circumstances 
under which the material is being investigated 
[23]. For example, the "therapeutic put ty"  which 
is used for physiotherapeutic purposes, bounces 
like an elastic ball but flows like a fluid when 
left on the laboratory bench. The same material 
would be idealized as an elastic material in the 
former "short" time scale collision problem and 
yet fluid-like properties would be attributed to it 
in the latter "long" time scale problem. The same 
problems of idealization arise in modelling soft 
biological tissue. The hysteresis loop that Lanir 
and Fung [3] observed during the initial loading 
and unloading of tissue in an uniaxial test indicates 
that energy is dissipated during stretching of the 
tissue. Moreover, stress relaxation of soft tissue 
occurs if observations are made over a sufficiently 
long time scale. For example, the stress relaxation 
in rabbit skin is less than 5% in 1 sec but can be as 
much as 25% in 10min [3]. 

However, the time scale of deformation (load- 
ing and unloading) for a heart valve leaflet is 
approximately 1 sec, since the valve opens and 
closes about sixty times per minute. Furthermore, 
the long term objective of mechanical characteriz- 
ation of glutaraldehyde fixed pericardium is the 
analysis of operational stresses in the prosthetic 
heart valve leaflet, in order to determine optimum 
designs. As a consequence if the relaxation time 
of the fixed tissue is long compared with 1 sec and 

the observed stress, during uniaxial loading, is 
relatively independent of strain rate then the cir- 
cumstances under which the valve leaflet operates 
would suggest an elastic idealization of the real 
material, even though the tissue may exhibit visco- 
elastic properties in different circumstances. 

2.4. The concept of strain energy, elastic 
symmetry and isotropy 

A consideration of the mechanical energy equation 
suggests that a finite elastic material inherently 
possesses potential energy when it is loaded 
[21]. It is this potential for doing work in the 
stressed state which produces the elliptical 
wounds, observed by Langer [24], when skin is 
incised. The inherent potential energy depends 
on the elastic deformation of the material and is 
usually considered to be a mathematical function 
of the measure of finite strain. In general, for an 
elastic material which has no apparent elastic sym- 
metries, the strain energy function, W, can be 
written as 

W = W(B,1, B12, B13, B22, B23,B33), (3) 

where Bij, i, j = 1, 2, 3, are the components of the 
left Cauchy-Green strain tensor referred to a 
rectangular Cartesian coordinate system Oxb 
x=, x3 [21]. 

If  the elastic material possesses no preferential 
directional properties in the unstressed state then 
the strain energy will have the same functional 
form under any rigid body rotation of the rect- 
angular Cartesian axes. It can be shown [25] that 
invariance of the functional form of W is possible 
if, and only if, 

W = W(I1, I2, I3), 

where I~, I2, I3 are the three strain invariants 
(invariant under the rotation of coordinate axes) 
derived from the scalar characteristic equation 
which is related to the left Cauchy-Green strain 
matrix [21]. 

An elastic material whose inherent potential 
energy has this functional form is said to be iso- 
tropic. Materials with specific directional proper- 
ties will only have elastic symmetries about planes 
and directions determined by these properties. 
They are called anisotropic. Evidence of aniso- 
tropy is provided experimentally by a different 
initial mechanical response to load in different 
material directions. 
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Figure4A schematic representation of the 
uniaxial loading of a rectangular block of 
glutaraldehyde-fixed bovine pericardium. The 
rectangular cartesian coordinate system has the 
xl-axis in the direction of load and the x : ,  
x:axes perpendicular to the load. The strairl 
invariants, I1,/2,/3, can be expressed in terms 
of the extension ratio, ~1 and the contraction 
ratios h2, ~3, when referred to this specific 
coordinate system. 

2.5. Compress ib i l i ty  
The test for compressibility that is usually 
employed in infinitesimal elasticity compares the 
bulk modulus and the Young's modulus of the 
material. As explained in Section 1 the bulk 
modulus is obtained from the ratio of the hydro- 
static pressure and the dilatation. The dilatation is 
a measure of volume change in infinitesimal 
elasticity theory [26]. In uniaxial load tests the 
only non-zero stress, o, is that in the direction of 
load. As a consequence the hydrostatic pressure is 
o/3. The dilatation is given by the sum of the 
infinitesimal strains ( e l l +  e22 + eaa). It can be 
shown that the physical meaning of the infinites- 
imal normal strain component ell is the increase 
in length divided by the original length and e22 
and e3a represent the contraction in width and 
thickness divided by the original width and thick- 
ness, respectively [21]. Unfortunately, biological 
tissue neither obeys Hooke's law nor are the 
strains infinitesimal. The strain measure is non- 
linear and finite and the normal strain components 
no longer physically represent the change in length 
divided by the original length as above. Indeed it 
can be shown [21], that the left Cauchy-Green 
finite elastic normal strain components can be 
written as 

BH ---- (X~-- 1),B22 = (X~-- 1),B33 = (X~-- 1), 

(5) 

where X~, X2, X3 are the principal extension and 
contraction ratios, respectively [21]. For this 
reason the dilatation no longer provides a measure 
of volume changes, and the ratio of the volume 
after the deformation, V, to that before the 
deformation, Vo, is given by 

(I3) '/2 = XxX2X3 = V/Vo. (6) 
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If  the extension under load is balanced by suitable 
contraction in the width and thickness then /3 
remains constant and equal to unity and the 
volume is unchanged during the deformation. The 
material is then incompressible. If 13, and hence 
V, change with load the material is classified as 
compressible. 

2.6. The homogeneous deformation of an 
isotropic compressible elastic material 
subjected to uniaxial load 

If  a rectangular block of isotropic compressible 
elastic material is subjected to a uniaxial load, F, 
then referred to the rectangular Cartesian coordin- 
ate system described in Fig. 4, the stress com- 
ponents in the directions Oxl, Ox2, Ox3 are given 
by 

- = o = X l  § - 
A 

(7) 

2 OW I3 3W I3 o = 22 + 

( 8 )  

0 = ~ X~-~I 2 X~]312+I3~  , 

(9) 

where W = W(/1,12, I3) is a measure of the strain 
energy induced by the load F, and A is the cross- 
sectional area of the block, perpendicular to the 
direction Oxl, before the deformation. 

If  the material is isotropic, then ),2 = 7% and 
Equations 8 and 9 are identical. 

Elimination of 3W/313 between Equations 7 



and 8 yields 

a [1W X2 [1W = - - +  - -  (10) 
D = 2(Xl -- X~/Xt) M1 2 [t12" 

A Taylor series expansion of W(Ib 12,13) about 
the equilibrium position I1 = 3, I2 = 3, I3 = 1 
yields 

[1WE 
W(I1, I2, I3) = W(3, 3, 1) + - ~ 1  (I1 - 3) 

+ [1 WE (12 -- 3) 
[112 

+ terms in 13 and higher order terms. (11) 

The partial derivatives [1WE~M1, [1WE/[112 are 
evaluated at the equilibrium position and are 
constants. Setting 

awe [1wE 
- c l ,  - c :  ( 1 2 )  

[111 [112 

gives the stored potential energy, to the first order, 
in I1 and 12, induced by uniaxial load, as 

~V(I1, 1-2, /3 )  = Ct(I1 - -  3) Jr- C2(I 2 - -  3) 

+ terms containing/3, (13) 

since it is assumed that the potential for doing 
work in the relaxed state is zero. 

The variation of the potential energy with [3 
(and consequently volume, since Ia = (V/Vo) 2) is 
given by Equation 8, through the partial derivative 
[1W/[113. Using this formulation, Equations 10 and 
13 imply that to a first approximation 

D = cl + X~c2, (14) 

which indicates that D is a linear function of X: =. 
Consideration of the ratio 

e33/eu = e22/en = constant (Poisson's ratio) 

which applies to infinitesimal elasticity theory, 
for an isotropic material, suggests that it is 
simply a linear first order approximation to the 
more general relation 

B33 B22 
- -  - -  f ( B 1 1 ) ,  ( 1 5 )  

B11 Bu 

where f is an arbitrary function of the left 
Cauchy-Green finite normal strain, Bn, in the 
direction of load. Physically, this mathematical 
statement suggests that contraction in the two 
directions perpendicular to the load is dependent 
on the uniaxial extension induced by the load. 

Written in terms of the principal extension and 
contraction ratios, Xl, X2 and Xa, Equation 15 
becomes 

X~--1 
X~ - -  1 - f ( X ~  - -  1 ) .  ( 1 6 )  

Expanding in a Taylor series about the equilibrium 
state Xl = 1, X2 = 1, X3 = 1, yields to second order 

k ~ - - 1  
= k + r n ( X ~ - - l ) + n ( X  2 - 1 )  2 . (17) 

X~--1 

When X~ has been determined as a polynomial, 
P(Xl), from Equation 17, then Equation 14 
predicts the variation of stress with principal 
extension ratio X1, namely 

a = 2(X1--P(X1)/X1)(ct + P(Xl)c2) (18) 

where 

P(X,) = l + k ( X ~ - l ) + m ( X ~ - l )  2 

+ n(Xl 2 -- 1) 3. (19) 

Equation 18 provides a non-linear relation 
between a and Xl, the slope of which varies with 
the extension ratio Xl, induced by the load. 

The slope of the stress-extension ratio curve 
at the origin provides a measure of the mechanical 
properties (i.e. the response to load) in the relaxed 
state of the material. 

Differentiating Equation 18 with respect to Xl 
and letting ~k 1 --> 1 gives 

da 
- -  = 4 ( 1 -  k)(cl + c=). ( 2 0 )  
dXl 

3. Materials and methods 
3.1. Preparation of standard glutaraldehyde- 

treated pericardium 
Pericardium taken from 16 to 20 week-old calves 
was transported in ice-cold isotonic saline (0.9% 
NaC1) from the abattoir. The pericardium was 
stripped to remove any fat and then placed loosely 
on 150 or 100mm diameter embroidery frames. 
The tissue was then immersed in 0.2% solution of 
glutaraldehyde (BDH Chemicals Ltd) buffered to 
pH 7.4 in 0.2 M phosphate buffer (Sorensen). The 
pericardium was fixed for 7 days before testing. 

3.2. Tissue selection and test specimen 
preparation 

Homogeneous strips of pericardium for testing 
were obtained by visual appearance. Regions 
which varied substantially in thickness or con- 
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tained tendon attachments were eliminated from 
the test procedure. A parallel bladed cutter with 
blades 11 mm apart was used to stamp out strips 
7 9 m m  long. These were trimmed to lengths of  
approximately 60 mm. Tissue thickness was 
measured with a Mitusoye thickness gauge to 
within an accuracy of -+ 0.02 mm. Small perspex 
blocks ( 1 2 m m  x 17mm x 3mm) ,  with a hole for 
screw attachment to the test rig, were glued on to 
the ends of  the tissue strip with cyano-acrylate 
adhesive. The approximate lengths of  free tissue 
between the blocks was 40mm.  Two short lengths 
(6 to 7 mm) of  black 4/0 silk sutures were glued 
at their mid-points to the middle of  the tissue 
strip, close to and parallel to the longitudinal edges 
of  the specimen by cyano-acrylate adhesive. 

3.3. Uniaxial load test apparatus 
A serve-motor driven assembly was used to load 
the tissue specimen. The applied force was 
measured by a Statham force transducer. The 
changes in tissue length and width between the silk 
sutures were measured by a displacement trans- 
ducer and video extensometer, respectively. The 
serve-motor possessed the facility for both a 
single load/unload test and cyclic loading. A 
three-channel calibrated pen recorder was used 
for force, length and width output. 

3.3. 1. Uniaxial load test  procedure  
The prepared specimen was attached to the rig: 
the position of the moving clamp was adjusted to 
obtain a fully relaxed specimen, without stretch 
or sag. The distance between the edges of  the 
perspex grips, where the tissue was attached, was 
measured with a steel rule to an accuracy of 
0.5 mm. The width of tissue between the sutures 
was measured using the video extensometer. The 
pens of the recorder were zeroed. The specimen 
was kept moist throughout the test by immersion 
in a bath of isotonic (0.9%) saline. A recirculating 
peristaltic pump and overflow guttering main- 
tained a constant fluid level in the bath. All tests 
were performed at room temperature. 

The test system was set to give maximum load of 
3 N. Beyond this level slippage in the perspex grips 
was observed. Single tests and cyclic tests (eight 
cycles) at different strain rates were undertaken. 
The average error (n = 10), at maximum load, 
between using the extensometer and the displace- 
ment transducer for axial displacement measure- 
ment was less than 0.6% in the extension ratio. 
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3.3.2. Stress-re laxat ion test 
The procedure for specimen preparation and test 
were those described above. The load was set at 
3 N. The step load facility available on the servo- 
motor  was utilized to impulsively load the tissue. 
At maximum load the tissue was maintained at 
the same extension (verified by the displacement 
transducer) and the relaxation in stress was 
recorded for 1000 sec by the force transducer. 

3.4. Comparison of the mechanical 
response to load from position to 
position and sac to sac 

Five pericardial sacs were fixed with glutaralde- 
hyde by the method described above. After treat- 
ment  six regions, emanating radially from the sac 
apex, were marked out. A single strip was cut 
from each region so that the longitudinal axis of 
the strip lay along the radius. Wherever possible 
the specimen was removed from the identical 
position in the region for each sac. Eight further 
strips were cut at random from two other sacs, no 
preference being given to position or direction 
other than to satisfy the criterion of thickness and 
tissue uniformity described earlier. 

4. Results 
4.1. Stress relaxation 
Fully conditioned (cyclically loaded and unloaded 
eight times) tissue was loaded impulsively to 3 N 
and the extension induced was then maintained. 
Fig. 5 shows a typical variation of stress with time. 
It can be seen that the stress varies linearly with 
loge(time). The relaxation time is usually defined 
as the time required for the stress to fall to 
0.368(e -1) of  its original value [26]. The relax- 
ation time of this specific specimen would be 
greater than 105yr. All specimens tested had 
relaxation times of the order of  many years, 
whether they were conditioned or the stress was 
allowed to relax after the first elongation. How- 
ever, this definition relies on a relaxation function 

G(t) = exp (-- t/T), 

where r is the relaxation time, derived from a 
linear viscoelastic Maxwell model. The relaxation 
function for glutaraldehyde treated pericardium is 

H(t) = A loge t + B, 

where A and B are time independent. This 
equation can be rewritten as 

H(t)  = Aloge(t/r), 
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Figure 5 The relaxation of stress with time when a specimen of glutaraldehyde-fixed pericardium is held at a fixed 
extension. The logarithmic decay of stress with time displayed here was typical of all specimens tested. 

where ~-= exp ( - -B/A)  is defined as the relax- 
ation time. A logarithmic relaxation of stress has 
been reported for other collageneous tissues [27]. 
With this definition, the relaxation time is the time 
it takes for a specimen to become stress free. This 
formulation again gives a relaxation time greater 
than 105 yr. 

4.2. Hysteresis and energy dissipation 
The effect of conditioning by cyclic loading is 
shown in Fig. 6. It can be seen that there is a 
substantial hysteresis loop indicating energy 
dissipation, on unloading, with a small amount of 
permanent deformation. However, after eight 
cycles the tissue loading and unloading curve is 
essentially the same and further energy losses are 
minimal. 

4.3. The effects of conditioning on the 
mechanical properties of the tissue 

Figs. 7 to 12 show the quantitative changes in the 
mechanical properties of the tissue that occur as 
the tissue is conditioned by cyclic loading at the 
strain rate of 0.004sec -1. Fig. 7 shows that the 

strain ratio (X~--1) / (X~--1)  can be approxi- 
mated by a first order truncated Taylor series in 
the normal strain B11 (= X ~ -  1) (see Equation 
17). However, the conditioned material in Fig. 8 
requires a further quadratic term in the truncation 
to fit the observed data. 

Fig. 9 shows the variation in volume, V, with 
the principal extension ratio, Xl, in both the con- 
ditioned and unconditioned material. It can be 
seen that there is an initial expansion of the 
material to a maximum volume change of 3% at 
about 12% extension of the tissue. 

Fig. 10 shows the agreement between theory 
and experiment for the variation of X~ with Xl 
for five consecutive tests of the conditioned 
material. The dotted line indicates the expected 

variation of ?t~ with Xl if the material were incom- 
pressible and isotropic. 

Fig. 1 1 shows the variation of D, the strain 
energy differential (see Equation 14) with X 2 for 
the conditioned and unconditioned material. 
Although the relationship between D and X~ is 
linear the predicted stress-extension ratio curves 
are non-linear. The theory predicts the variation 
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curve (o) maximum stress is reduced by 50% 
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of  stress accurately over the whole range of  

deformation,  Fig. 12. 

4.4. The effect of strain rate on the 
mechanical propert ies of  the tissue 

Figs. 13 to 18 show changes in the parametric 
values produced by substantially different strain 
rates for the same condit ioned specimen. The low 
strain rate was set at 0 .0008sec -1 equivalent to 
an extension rate of  2 mm min -~ for a specimen of  
length 42 mm, while the high strain rate was set 
at 0.02 sec -1 which is equivalent to an extension 
rate of  5 0 m m m i n  -1. The strain ratio could be 
satisfied by a quadratic truncation of  the Taylor 
series expansion of  the functional variation of  
normal extensional strain, Bl l .  

Figs. 15 and 16 indicate that the experimental 
variation of  D with X~ can be fi t ted by two inter- 
secting straight lines. This suggests that the 
material undergoes a "phase transi t ion" from one 
elastic material to a second elastic material as it is 
being loaded. Experimentally the transition will 

take place over a range of  load. The theoretical 
transition is at the point  of  intersection of  the two 
straight lines. 

Figs. 17 and 18 show the experimental variation 
of  the stress with the principal extension ratio ?tl, 
and the stress predicted by the theory.  There is 
excellent agreement between the theoretical pre- 

dictions and the experimental observations over 
the whole range of  deformation.  The slope at the 
origin predicted from the theory for the high strain 
rate, 0.02sec -1, is 0.168 N m m  -2 while that 
obtained from a polygon approximation of  the 
experimental points is S = 0.15 N mm -2. Similarly 
the slope at the origin predicted by the theory for 
the low strain rate, 0.0008 sec -1 is 0 . 2 0 4 N m m  -2 
which compares favourably with the value 0 .20N 
mm -2 obtained from the experiment.  

Table II shows that the observed stress for a 
given extension is virtually identical over the 
whole range of  extension. The maximum differ- 
ence in observed stress for the two strain rates at 
any point  is 4.5% at an extension of  18%. 
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4.5. Comparison of mechanical properties 
associated with apparent collagen 
orientation 

Figs. 19 to 22 show the differences in mechanical 
behaviour that can occur locally in the pericar- 
dium. Two pieces of tissue, I32 and I33, were cut at 
right angles to one another in an apparently uni- 
form region of tissue. I32 was prepared so that the 
longitudinal axis appeared to be in the direction of 
collagen orientation. I33 was obtained from a 
region nearby and prepared so that the collagen 
fibres appeared to run transversely across the 
tissue segment. 

Fig. 19 shows that in both specimens the func- 
tional form of the strain ratio (B22/B11) can be 
satisfied by a linear truncation of  the Taylor series 
expansion (see Equation 17). There is a substantial 
difference between the effective "Poisson's rat io" 
between the two specimens. At small extensions, 
"Poisson's rat io" (the constant term) is 0.525 for 
I32 while I33 takes a value 0.0291. Both specimens 
undergo a "phase change" on loading as depicted 
by Figs. 20 and 21. However, these occur at sub- 
stantially different extensions. Fig. 22 shows that 
the theoretical transition point for the "st iffer" 
tissue, I32, occurs at an extension of 10%, while 
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Figure 12 The observed and predicted vari- 
ation of stress, a, with principal extension 
ratio, h~, at a strain rate of 0.004 sec -1. The 
standard error bars indicate the dispersion 
about the mean of the experimental obser- 
vations for loading curves (n = 5) after con- 
ditioning (A). The curve (,, . . . .  zx) is the 
conditioned stress-extension ratio curve 
predicted from the variation of D with h~ 
(Fig. 11) and the variation of h~ with ;~ 
(Fig. 8). The observed variation of stress 
with extension ratio for the unconditioned 
specimen (e) indicates a material that is 
"stiffer" before conditioning than after 
conditioning. The curve ( o - - o )  is the 
stress-extension ratio curve predicted from 
the variation of D with h~ (Fig. 11) and the 
variation of h~ with h~ (Fig. 7). Although 
D varies linearly with X~ in both the con- 
ditioned and unconditioned states of the 
same specimen, the variation of stress with 
extension ratio is nonqinear. 

the specimen I33 does  no t  reach its theoret ica l  

t ransi t ion po in t  unti l  an ex tens ion  o f  23% has 

occurred.  

TABLE II The variation of uniaxial stress with 
extension ratio for two different strain rates 

Principal Stress (N mm -2 ) Stress (N mm -~ ) 
extension strain rate strain rate 
ratio, h I 0.02 sec -1 0.0008 sec 

1.02 0.003 0.004 
1.04 0.008 0.009 
1.06 0.015 0.015 
1.08 0.023 0.023 
1.10 0.034 0.035 
1.12 0.051 0.050 
1.14 0.080 0.0?8 
1.15 0.099 0.097 
1.16 0.133 0.133 
1.17 0.174 0.177 
1.18 0.255 0.267 
1.19 0.362 0.349 

4.6. The variation of the mechanical 
properties of the tissue at different 
positions and from sac to sac 

Table III presents  the response to load in the 

uns t ra ined  state,  measured  by the slope at the 

origin o f  the s t r e s s - e x t e n s i o n  ratio curve at six 

radial d i f ferent  posi t ions  in five d i f fe rent  peri- 

cardial sacs. The grand mean o f  these values is 

TABLE III The mechanical response to load in the 
unstrained state, measured by the slope at the origin of 
the stress-extension ratio curve for six differential radial 
positions and five different sacs. The grand mean is 
0.224 • 0.118 

Sac number 

Position 
1 2 3 4 5 6 

1 0.202 0.388 0.288 0.708 0.341 0.191 
2 0.158 - - 0.231 0.167 0.290 
3 0.200 0.120 0.202 0.279 0.095 0.218 
4 0.238 0.286 0.276 0.181 0.161 0.387 
5 0.350 0.179 0.169 0.203 0.101 0.282 
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Figure 13  The variation of strain ratio B~2/Bll  ~ (X~ --  l)/(X~ -- 1) with normal strain, B~I = k~ -- 1, at "low" strain rate, 
0.0008 sec -1. The experimental points (*) lie on a quadratic truncation of the Taylor series expansion of normal strain, 
B~I, about the unstrained state (o - -o ) .  The effective Poisson's ratio (the value of the strain ratio as X~ -,  1) is + 0.05. 

0.244 with a standard deviation of  0.118. Analysis 
of  variance of  these data shows that there is no 
significant difference in the response to load in the 
unstrained state from posit ion to posit ion in any 
sac or from sac to sac in any position. 

The mean of  the slopes at the origin of  the 
s t ress-extension ratio curve of  eight specimens cut 
at random from two further sacs was 0.286 with a 
standard deviation of  0.12. There is no significant 
difference (student t test) between the grand mean 
of  the 28 specimens cut radially to the pericar- 
dium apex at six different positions in five sacs 

and the eight specimens cut in random directions 
from two further sacs. 

5. Discussion 
The desire to understand the behaviour of soft 
biological tissue when it is subjected to external 
forces has resulted in a substantial literature 
devoted to tissue characterization. Material 
scientists and bioengineers in the late 1950s and 
early 1960s applied engineering test procedures to 
skin in an effort to assist and provide information 
for the pragmatic approach adopted by the plastic 

129 



0.3 

0.2" 

o o Theoretical curve / 
[least square error best fit] / 

.1. -o.o3 - o.2z ( ^ ; -  1) -o.91(,,;- 1)' / 
A1 - 1 . . / 

0.1 

Strain rate - 0.02 Sec "1 

~< 

o" 

I I i i 

0.1 0.2 0.3 0.4 

non-linear strai n, A~- 1 

Figure 14 The variation of strain ratio B22/B11 = (;t~ -- l)/(X~ -- 1) with normal strain, Bll = X~ -- 1, at "high" strain 
rate, 0.02 sec -~ , for the same specimen used for the "low" strain rate displayed in Fig. 13. Again the experimental points (e) 
lie on a quadratic truncation of the Taylor series expansion of normal strain, Bn, about the unstrained state (o--o).  
The effective Poisson's ratio is + 0.03 at the "high" strain rate compared with + 0.05 at the "low" strain rate. 

surgeon during reconstructive surgery. Since that 
time the development of bioprosthetic devices, 
especially in heart valve replacement and by-pass 
grafts, have initiated intensive research programmes 
of material treatment and characterization. 

The majority of investigations that have been 
reported can be criticised under three major 
headings: 

1. the mechanical characterization is usually 
independent of the circumstances in which the 
tissue is used; 

2. the region of applicability of the model 
formulation employed to characterize the tissue 

is not appropriate to the actual behaviour of the 
tissue; 

3. the assessment is qualitative or relies on 
curve fitting techniques without physical or 
biological foundation. 

All real materials lie somewhere in the spectrum 
between an idealized elastic solid and an idealized 
viscous fluid [23]. Rigid bodies and inviscid fluids 
are special cases of these two idealizations. The 
conditions to which the material is subjected often 
dictates the observed behaviour. The observations 
suggest at what point in the spectrum of idealiz- 
ations the material behaviour caused by those 
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condi t ions  should be placed. I f  the circumstances 
are changed then the material  behaviour is changed 
and as a consequence the model  idealization which 
best portrays this behaviour might well change. 
For  example,  a lump of  ice which falls from a 

glacier onto  a mounta ineer  below would be 
model led as a rigid body  when it strikes the 
unfo r tuna te  victim. However, the same mounta in -  
eer, if he were a glaciologist, may be quite happy 
modell ing the ice as a fluid if he were interested 

in the movemen t  of  the glacier over a period of a 

year. This example and that related to " therapeu-  
tic p u t t y "  described in Section 1, suggest that  time 
scales play an impor tan t  part in the choice of a 
model  which provides a good approximat ion  of  
reality. 

The second criticism arises from the use of  
models in a region of  applicabil i ty for which they 
were no t  designed. For  example,  the infini tesimal 
theory of  elasticity was constructed as a first order 
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linear continuum approximation to reality when 
the deformation gradients are considerably smaller 
than unity. When this condition no longer holds, 
as in the deformation of  rubber, leather, skin and 
other biological tissues, the first order linear model 
breaks down. As a consequence the linear approxi- 
mation to the actual strain measure is no longer 
valid. Although the change in length divided by 
the original length can still be measured it can no 
longer be considered as the strain measure. The 
uniaxial strain is non-linear in the extension ratio 
[21] and the engineering evaluation of  strain is no 
longer appropriate. Furthermore, deductions of  
incompressibility from the comparison of elastic 
parameters that are only relevant in the infinites- 
imal theory are erroneous. 

The same remarks apply to lumped parameter 

models that use a combination of  springs and dash 
pots. The relationship between force and exten- 
sion in a linear spring only applies to infinitesimal 
deformations. The linear viscous damping com- 
ponent of  a dash pot only provides a first order 
theory for infinitesimally small strain rates. 

The present study has used a continuum 
physics approximation of  reality to model the 
behaviour of  glutaraldehyde-fixed pericardium 
when it is subjected to uniaxial load. The enquiry 
was specifically directed at the operational 
mechanical properties of  a bioprosthetic heart 
valve leaflet. For this reason a model which realis- 
tically considered the operational characteristics 
was required. Since typical fixed tissue relaxation 
times were of  the order of  years and a heart valve 
opens and closes approximately once a second, the 
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Figure 1 7 The variation of stress, (r, with extension ratio, Xl, at the "low" strain rate, 0.0008 sec -1. The experimental 
points (e) lie on (to a good approximation) the stress-extension ratio curve predicted by the theory ( o ~ o ) .  The slope 
of the curve at the origin, which provides a measure of mechanical response to uniaxial load in the unstrained state of 
the tissue, has a value 0.204 N rnm -2. 

operational time scale is much shorter than the 
material relaxation time (see Fig. 5). As a conse- 
quence, stress relaxation is unlikely to have a 
dominant  role in tissue behaviour in a heart valve. 

Although energy was lost during the initial 
loading and unloading cyclic, stability of  cycle 
with only small energy losses were observed after 
about eight cycles (Fig. 6). For  this reason energy 
dissipation is unlikely to play an important  role in 
short-term tissue behaviour in the valve leaflet. 
Moreover, the stress induced by loading was not 

altered substantially by varying the strain rate over 

a wide range. 
These observations suggest that in the circum- 

stances pertaining to heart valve performance the 
tissue behaviour is dominated by the characteris- 
tics associated with an ideal elastic material. This 
conclusion might, in the first instance, appear 
strange for a material that contains such a high 
percentage (approximately 75%) of  unbound 
water. However, the experimental  method essenti- 
ally measures the deformation of  the solid phase 

133 



0.30-~ 

Strain rate - 0.02 ser -1 

O. 25 - o o Theoretical prediction T 

t (1.n-1.67A:) ! 
~  z(^,- A:/^,) (3.s3-3.93A:) 

Slope at origi n ~ 411-El  [c, + c~] 

=0.166 N mm -~ 

O. 20 �9 Expari mental poi nts 

~, 0.15 

1.10 

1.05 

i 

1.0 1.1 1.2 

Principal extension ratio, ^1. 

Figure 18 The variation of stress, o, with extension ratio, h~, at the "high" strain rate, 0 .02sec-l .  The experimental 
points (e) lie on (to a good approximation) the stress-extension ratio curve predicted by the theory (o------o). The slope 
of  this curve at the origin has a value 0.166 Nmrn-L 

of the tissue while it is immersed in physiologically 
isotonic normal fluid. For this reason it is quite 
possible that it is the solid phase only and its inter- 
action with the fluid phase (which includes the 
unbound water and ambient fluid) which displays 
the elastic characteristics. This suggestion is sup- 
ported by a different response to load when the 
tissue is not immersed in saline (personal obser- 
vations). The operating conditions of the valve 
leaflet are within a fluid ambient. For this reason 
they have been simulated on the test rig. 

As a consequence it is not appropriate to use 
the argument that the high percentage of water 
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(which under physiological forces is incompres- 
sible) renders the tissue incompressible. Nor can 
the comparison of bulk modulus and Young's 
modulus invoked by Carew et al. [9], be used to 
establish tissue incompressibility. The deformation 
of fixed pericardium, skin, and other tissue trans- 
cends the conditions of an infinitesimal elastic 
model. When the restraint of incompressibility is 
removed the principal contraction ratio, X3, can 
no longer be evaluated from the measured values 
of X1 and X2 in an uniaxial load test. As a conse- 
quence the evidence for anisotropy, the calculated 
value of X3 unequal to the measured value of X2, 
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Figure 1 9 The variation o f strain ratio, B ~z/Bzl = (K 22 - -  1)/(~. ~ - -  1), with the normal strain, B I~ = ~, ~ - -  1, for two speci- 
mens cut at right angles to one another. Specimen I3~ appeared to have a predominance of longitudinal collagen fibres while 
specimen I33 appeared to have the collagen fibres predominantly in the transverse direction. Experimental points (o) 
of both specimens tie on a linear truncation of the Taylor series expansion of normal strain, B 11, about the unstrained 
state (o- e). The effective Poisson's ratio of I32 is + 0.525, while that of Ia3 is + 0.029. 

presented by Lanir and Fung [3] for rabbit skin, is 
no longer valid. 

All materials display some degree of  compres- 
sibility. Indeed, it has been shown that the expan- 
sion of  rubber in uniaxial load is a necessary 
thermodynamic requirement [28]. Small volume 
changes during the extension of  vulcanized rubber 
have been confirmed experimentally by Gee et  al. 

[61. 
In this study a compressible finite elastic model 

has been used. The measure of  compressibility is 
provided by the value of  the strain invariant of 
I3 = (V/Vo)  2. Values o f / 3  > 1 indicate an expan- 
sion of  the material while values ofI3  < 1 indicate 

_ "~ 2"~ 2~, 2 a contraction. Since I3 - / ' - l P , 2 1 t 3 ,  it is the relative 
changes in the extension ratio, Xz and the contrac- 
tion ratios M and ),3, which determine the volume 
changes. 

A further assumption of  elastic isotropy has 
also been made. This restricts the material poten- 
tial energy to a dependence on the strain invari- 
ants, Iz, I2, and/3,  only. Furthermore the contrac- 

tion ratio X2 and X3 should be equal over the 
whole deformation range in uniaxial load. 
Although attempts have been made to measure X3 
by three different experimental methods, all have 
been fraught with technical problems and the 
results have been inconclusive. One of  the major 
problems is the accuracy required to measure 
changes of  less than 10% in a tissue of  initial 
thickness of  the order of  0.5 mm, when the tissue 
boundary may contain undulations approaching 
the dimensions that have to be measured. Methods 
using a microscope and ultrasound both suffer 
from this problem. 

A method devised by Gee et  al. [6] to measure 
volume changes in rubber by Archimedian prin- 
ciples has also been employed. Problems arising 
from fluid transfer during extension and its 
relationship to the deformation of the solid phase 
measured in the standard uniaxial load tests have, 
at the present time, clouded possible interpret- 
ation of  the experimental observations. Of course 
vulcanized rubber immersed in fluid is not sub- 
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Figure 20 The variation of strain energy differential, D = 0/2 (h~ -- h~/k 1 ) with the square of the contraction ratio, ~.~ 
for the two specimens I32 and I33. The experimental points (e) of both specimens lie on (to a good approximation) two 
intersecting straight lines (o----o). The transition points of the two specimens occur at different values of ~ .  

jected to fluid transfer into and out of  the solid 
phase. 

Although anisotropy has usually been an 
integral part of  the discussion of the majority of 
studies of  the mechanical behaviour of  soft tissue 
this concept has never been .incorporated, as far 
as the authors are aware, into a quantitative 
uniaxial finite elastic model. The continuum 
model averages all the molecular structure over a 
volume that can contain a number of collagen 
fibres of  diameter 100nm. Furthermore, it would 
appear that glutaraldehyde cross-linking which 
depends on collagen content, but is likely to be 
perpendicular to the 3a chain superhelices which 
constitute the pentafibrils, is the dominant deter- 
minant of  mechanical behaviour changes [ 17]. 

As a consequence, although collagen content 
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and direction may change the local material 
properties (on a macroscopic length scale), this 
may be simply due to biological variation rather 
than specific anisotropic properties. In the light 
of  these considerations and since it is necessary to 
establish the mechanical properties (on average) 
for the tissue within the whole leaflet before they 
can be incorporated into a design procedure, an 
isotropic strain energy function was used. The 
mathematical simplicity which resulted from 
isotropy also makes this hypothesis attractive, 
although this was not the major consideration 
which influenced the choice of  strain energy 
formulation. 

Any idealized elastic model should contain the 
infinitesimal elasticity theory as a first order 
approximation. An extrapolation of  this idea to 
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Figure 21 The variation of D with h~ for the specimen I33 alone. The experimental points (o) missing from Fig. 20 
(dictated by the scale) have been included to show the increased degree of contraction of I33 , compared with I32 , 
for the same load. 

the uniaxial load test suggests that the dependence 
of the strain ratio B22/Bxa on the normal finite 
strain Bit  should be investigated. I f  B22/Bn 
depends on B n  then in the limit of  an infinitesimal 
deformation the strain ratio would be 

lim / (Bla)  = constant, 
B 1 1 ~ 0  

which can be equated with Poisson's ratio. Indeed 
the glutaraldehyde fixed pericardium displayed 
such a dependence. Expansion of the functional 
form of B n  in a Taylor series about the unstrained 
state allowed a polynomial approximation of 
f (Bn) t o  be constructed. A linear truncation was 
sufficient in some cases and it was never necessary 
to go beyond a quadratic approximation in all 
cases investigated (see Figs. 7 and 8). 

Mathematical analysis of  the homogeneous 
deformation produced by the uniaxial load 
showed that 

a ~W ~W 
D - 2 ( X t - - h ~ / X l ) -  ~)I1 b ~,~ M--~" 

As a consequence, a linear truncation in I t  and 12 

of a Taylor series expansion of W about the 
equilibrium state suggests a linear relation between 
D and X~. At first glance the experimental values 
of  D appear to vary non-linearly with X~. How- 
ever, closer inspection reveals that the variation 
of D with X~ can be separated into two regions 
in both of  which D and X~ are (to a good approxi- 
mation) linearly related. 

A physical interpretation of this phenomenon 
would be that the tissue behaves like an isotropic 
compressible elastic material which changes 
"phase" when a certain load is reached. The 
material potential energy induced by the load can 
be considered as a pair of  intersecting surfaces in 
the four-dimensional space, W, 11,12,13 (Fig. 23). 

The equilibrium position of the initial elastic 
material is (0, 3, 3, 1), when the potential energy 
is zero for no deformation. The second elastic 
material would mathematically have a non-zero 
potential energy when la = 3, 12 = 3, /3 = 1, but 
this position on the second potential energy sur- 
face is not physically realizable. As the material 
is loaded, the point (W, I b  /2, /3) which repre- 
sents the potential energy at a given deformation 
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Figure 22 The observed and predicted variation of stress, or, with principal extension ratio, 5.1, for the two specimens 
132 and 133. The experimental Observations (o) lie on (to a good approximation) the stress-extension ratio curve pre- 
dicted by the theory (* *) in both specimens. The theoretical transition points occur at different extensions in the 
two specimens. Both transition points occur at substantially greater extensions than those associated with the 
"incubation period" [ 17 ]. 

moves along a four-dimensional space curve which 
meets the second potential energy surface at a 
specific potential energy/deformation point. This 
point in the continuum theory will depend 
inherently on the local material microstructure 
and how it is affected by the loading procedure. 
Further loading moves the point (W, I1, I 2 , / 3 )  
on to the second potential energy surface (Fig. 23). 
The theory specifies a particular transition point; in 
practice the transition from one elastic material, 
with a specific strain energy, to a second elastic 

material, with a different strain energy but of  the 
same functional form as the initial elastic material, 
will take place over a deformation range. 

Once the variation of D with X] has been cate- 
gorized, the stress can be predicted at any exten- 
sion. Figs. 12, 17, 18 and 22 show that agreement 
between prediction and experimental observation 
is excellent over the whole deformation range 
considered. 

It is not yet clear how the different elastic 
potentials relate to changes in the tissue micro- 
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Figure 23 The schematic representation of the 
projection onto the plane I 3 --- constant of the 
intersecting potential energy surfaces in the 
four-dimensional space, If, I1, I2, 13. The pro- 
jection of a four-dimensional surface on to a 
coordinate plane in four-dimensional space gives 
a surface in the resulting three-dimensional 
space. The surface ABCD represents the pro- 
jected potential energy surface associated with 
the initial elastic material. The point I is the 
projection of the point (0, 3, 3, t) onto the 
plane I 3 = constant. The curve IT represents 
the projection of the four-dimensional space 
curve on to I 3 = constant. The transition point 
is reached at T. At this stage in the deformation 
the space curve traced out by the point (W, It,  
12, 13) moves on to a new potential energy 
surface. The projection of this surface on to 
13 = constant is EFGH. The point (W, 1 I, 12,13) 
now moves along a four-dimensional space 
curve, whose projection on to 13 = constant is 
TM, until the maximum extension is achieved. 

structure.  Such a correlat ion awaits a future 

investigation. It has been suggested [17, 2 9 - 3 2 ]  
that  the disappearance of  collagen crimping in 
per icardium tissue signals the cessation of  the 

high compliance region (referred to as the 
" i n c u b a t i o n "  region by  Broom [17])  and the 

onset  of  rapid material  stiffening wi th  extension.  
The lat ter  p h e n o m e n o n  has been explained by 
the uniaxial  loading of  straightened collagen 
fibres [17]. 

The evidence presented here (Fig. 22) suggests 
that the t ransi t ion from one elastic potent ia l  to a 
second elastic potent ia l  occurs at larger extensions 
than might  be  associated with Broom's  incuba t ion  
region. However,  since this region has only ever 

been described quali tatively,  quant i ta t ive com- 
parisons are difficult  to make.  Indeed,  the material  
t ransi t ion point  is no t  reached at all in Fig. 11, yet  
the concomi tan t  s t ress-pr incipal  extension curve, 
Fig. 12, has a characteristic soft tissue non-l inear  

behaviour.  I f  the rapid material  stiffening region is 
associated purely  with collagen fibre loading, 
irrespective of  the accompanying  molecular  
material  const i tuents ,  then some form of tran- 
si t ion would  have been expected in Fig. 11. 

The close agreement between exper iment  and 
theory allows the slope at the origin of  the s t ress -  

ex tens ion  ratio curve to be computed  mathe- 
matically.  In  this way the mechanical  response to 

load in the uns t ra ined  state may be determined.  

This allows a test for the elastic symmetr ies  associ- 
ated with the material.  

Only  statistical analysis can confirm whether '  
qualitative appearances are indeed quant i ta t ive 
differences. Table IV shows that  there is no 
significant difference in the mechanical  proper- 
ties from pericardial sac to pericardial sac; nor  is 

there any significant difference in mechanical  
properties from posi t ion to posit ion in an 
individual  sac for specimens whose longi tudinal  
lengths are in an apex radial direction. 

There is no significant different  be tween the 
mechanical  properties of  specimens cut at ran- 

dom and those cut in a specific direction.  This 
experimental  and statistical evidence suggests the 
pericardium behaves like an isotropic compressible 

TABLE IV The analysis of variance from position to 
position and sac to sac for the statistics displayed in 
Table IIl. There is no significant difference between the 
mechanical response to load from sac to sac or from 
position within a sac (F test) 

Source of Sum of Degrees of Estimated F 
variation squares freedom variation 

Residual 0.092 4 0.023 1.84 
between sacs 

Residual 0.061 5 0.012 1.02 
between 
position in 
a sac 

Remaining 0.225 18 0.013 
Residual 

Total sum 0.378 27 
of squares 
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material. The assertions that bovine pericardium 

is anisotropic have not  been based on quantitative 
evaluation of the material response to load, in the 
unstrained state in different directions. In fact the 
elastic symmetries of the bovine pericardium have 
not  been investigated by Broom [17] at all. 

In conclusion, this study has shown that glutaral. 
dehyde fixed pericardium can be modelled, to a 
good approximation, as an isotropic compressible 
elastic material that undergoes a transition to a 
second elastic material governed by a potential 
energy function of different magnitude but the 
same functional form as that associated with the 
initial elastic material. There is no experimental 

evidence of  anisotropy. If the operational stress in 
bioprosthetic valve leaflets is required for design 

requirements then all of  the above characteristics 

should be incorporated in the subsequent analysis. 

This study also suggests that quantitative 
assessment of other soft biological tissue may 

require re-evaluation, depending on the conditions 

to which it will be subjected. 
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